Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 7(5): e2410441, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717776

RESUMO

This cohort study explores variability in neurodevelopment across sociodemographic factors among youths.


Assuntos
Desenvolvimento do Adolescente , Humanos , Adolescente , Feminino , Masculino , Transtornos do Neurodesenvolvimento/epidemiologia , Classe Social
2.
Environ Res ; 240(Pt 1): 117390, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866541

RESUMO

Recent studies have linked air pollution to increased risk for behavioral problems during development, albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional behaviors may be affected when exposure coincides with the transition to adolescence - a vulnerable time for developing mental health difficulties. This study investigates if annual average PM2.5 and NO2 exposure at ages 9-10 years moderates age-related changes in internalizing and externalizing behaviors over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the residential address of each participant using an ensemble-based modeling approach. Caregivers answered questions from the Child Behavior Checklist (CBCL) at the baseline, 1-year follow-up, and 2-year follow-up visits, for a total of 3 waves of data; from the CBCL we obtained scores on internalizing and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models were used to examine both the main effect of age as well as the interaction of age with each pollutant on behavior while adjusting for various socioeconomic and demographic characteristics. Against our hypothesis, there was no evidence that greater air pollution exposure was related to more behavioral problems with age over time.


Assuntos
Poluição do Ar , Criança , Humanos , Adolescente , Poluição do Ar/efeitos adversos , Estudos Longitudinais , Agressão , Ansiedade
3.
Biol Psychiatry Glob Open Sci ; 3(4): 785-796, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881576

RESUMO

Background: Population-based neuroscience offers opportunities to examine important but understudied sociocultural factors such as acculturation. Acculturation refers to the extent to which an individual retains their cultural heritage and/or adopts the receiving society's culture and is particularly salient among Hispanic/Latinx immigrants. Specific acculturative orientations have been linked to vulnerability to substance use, depression, and suicide and are known to influence family dynamics between caregivers and their children. Methods: Using data from first- and second-generation Hispanic/Latinx caregivers in the Adolescent Brain Cognitive Development (ABCD) Study (N = 1057), we examined how caregivers' acculturative orientation affects their mental health, as well as the mental health and brain function of their children. Neuroimaging analyses focused on regions associated with self- and affiliation-based social processing (ventromedial prefrontal cortex, insula, and temporoparietal junction). Results: We identified 2 profiles of caregiver acculturation: bicultural (retains heritage culture while adopting U.S. culture) and detached (discards heritage culture and rejects U.S. culture). Bicultural caregivers exhibited fewer internalizing and externalizing problems than detached caregivers; furthermore, youth exhibited similar internalizing effects across caregiver profiles. In addition, youth with bicultural caregivers displayed increased resting-state brain activity (i.e., fractional amplitude of low-frequency fluctuations and regional homogeneity) in the left insula, which has been linked to psychopathology; however, differences in long-range functional connectivity were not significant. Conclusions: Caregiver acculturation is an important familial factor that has been linked to significant differences in youth mental health and insula activity. Future work should examine sociocultural and neurodevelopmental changes across adolescence to assess health outcomes and determine whether localized, corticolimbic brain effects are ultimately translated into long-range connectivity differences.

4.
Trends Neurosci Educ ; 32: 100204, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689430

RESUMO

PURPOSE: Attentional control theory (ACT) posits that elevated anxiety increases the probability of re-allocating cognitive resources needed to complete a task to processing anxiety-related stimuli. This process impairs processing efficiency and can lead to reduced performance effectiveness. Science, technology, engineering, and math (STEM) students frequently experience anxiety about their coursework, which can interfere with learning and performance and negatively impact student retention and graduation rates. The objective of this study was to extend the ACT framework to investigate the neurobiological associations between science and math anxiety and cognitive performance among 123 physics undergraduate students. PROCEDURES: Latent profile analysis (LPA) identified four profiles of science and math anxiety among STEM students, including two profiles that represented the majority of the sample (Low Science and Math Anxiety; 59.3% and High Math Anxiety; 21.9%) and two additional profiles that were not well represented (High Science and Math Anxiety; 6.5% and High Science Anxiety; 4.1%). Students underwent a functional magnetic resonance imaging (fMRI) session in which they performed two tasks involving physics cognition: the Force Concept Inventory (FCI) task and the Physics Knowledge (PK) task. FINDINGS: No significant differences were observed in FCI or PK task performance between High Math Anxiety and Low Science and Math Anxiety students. During the three phases of the FCI task, we found no significant brain connectivity differences during scenario and question presentation, yet we observed significant differences during answer selection within and between the dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN). Further, we found significant group differences during the PK task were limited to the DAN, including DAN-VAN and within-DAN connectivity. CONCLUSIONS: These results highlight the different cognitive processes required for physics conceptual reasoning compared to physics knowledge retrieval, provide new insight into the underlying brain dynamics associated with anxiety and physics cognition, and confirm the relevance of ACT theory for science and math anxiety.


Assuntos
Transtornos de Ansiedade , Ansiedade , Humanos , Universidades , Física , Estudantes
5.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37577598

RESUMO

Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a two-segment solution determined by a k-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Finally, we proposed a method for decoding additional components of the gradient decomposition. The current work aims to provide recommendations on best practices and flexible methods for gradient-based functional decoding of fMRI data.

6.
Neuroimage ; 279: 120287, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536527

RESUMO

As we move toward population-level developmental neuroscience, understanding intra- and inter-individual variability in brain maturation and sources of neurodevelopmental heterogeneity becomes paramount. Large-scale, longitudinal neuroimaging studies have uncovered group-level neurodevelopmental trajectories, and while recent work has begun to untangle intra- and inter-individual differences, they remain largely unclear. Here, we aim to quantify both intra- and inter-individual variability across facets of neurodevelopment across early adolescence (ages 8.92 to 13.83 years) in the Adolescent Brain Cognitive Development (ABCD) Study and examine inter-individual variability as a function of age, sex, and puberty. Our results provide novel insight into differences in annualized percent change in macrostructure, microstructure, and functional brain development from ages 9-13 years old. These findings reveal moderate age-related intra-individual change, but age-related differences in inter-individual variability only in a few measures of cortical macro- and microstructure development. Greater inter-individual variability in brain development were seen in mid-pubertal individuals, except for a few aspects of white matter development that were more variable between prepubertal individuals in some tracts. Although both sexes contributed to inter-individual differences in macrostructure and functional development in a few regions of the brain, we found limited support for hypotheses regarding greater male-than-female variability. This work highlights pockets of individual variability across facets of early adolescent brain development, while also highlighting regional differences in heterogeneity to facilitate future investigations in quantifying and probing nuances in normative development, and deviations therefrom.


Assuntos
Individualidade , Substância Branca , Humanos , Masculino , Adolescente , Feminino , Criança , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Neuroimagem/métodos , Cognição
7.
Res Sq ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645919

RESUMO

Ambient air pollution is ubiquitous, yet questions remain as to how it might impact the developing brain. Large changes occur in the brain's white matter (WM) microstructure across adolescence, with noticeable differences in WM integrity in male and female youth. Here we report sex-stratified effects of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on longitudinal patterns of WM microstructure from 9-13 years-old in 8,182 (49% female) participants using restriction spectrum imaging. After adjusting for key sociodemographic factors, multi-pollutant, sex-stratified models showed that one-year annual exposure to PM2.5 and NO2 was associated with higher, while O3 was associated with lower, intracellular diffusion at age 9. All three pollutants also affected trajectories of WM maturation from 9-13 years-old, with some sex-specific differences in the number and anatomical locations of tracts showing altered trajectories of intracellular diffusion. Concentrations were well-below current U.S. standards, suggesting exposure to these criteria pollutants during adolescence may have long-term consequences on brain development.

8.
medRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37162908

RESUMO

Recent studies have linked air pollution to increased risk for behavioral problems during development, albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional behaviors may be affected when exposure coincides with the transition to adolescence - a vulnerable time for developing mental health difficulties. This study examines how annual average PM2.5 and NO2 exposure at ages 9-10 years relates to internalizing and externalizing behaviors over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the residential address of each participant using an ensemble-based modeling approach. Caregivers answered questions from the Child Behavior Checklist (CBCL) at baseline and annually for two follow-up sessions for a total of 3 waves of data; from the CBCL we obtained scores on internalizing and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models were used to examine both the main effect of age as well as the interaction of age with each pollutant on behavior while adjusting for various socioeconomic and demographic characteristics. Overall, the pollution effects moderated the main effects of age with higher levels of PM2.5 and NO2 leading to an even greater likelihood of having no behavioral problems (i.e., score of zero) with age over time, as well as fewer problems when problems are present as the child ages. Albeit this was on the order equal to or less than a 1-point change. Thus, one year of annual exposure at 9-10 years is linked with very small change in emotional behaviors in early adolescence, which may be of little clinical relevance.

9.
iScience ; 26(3): 106087, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36915692

RESUMO

Neuroimaging studies showing the adverse effects of air pollution on neurodevelopment have largely focused on smaller samples from limited geographical locations and have implemented univariant approaches to assess exposure and brain macrostructure. Herein, we implement restriction spectrum imaging and a multivariate approach to examine how one year of annual exposure to daily fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum ozone (O3) at ages 9-10 years relates to subcortical gray matter microarchitecture in a geographically diverse subsample of children from the Adolescent Brain Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identified a latent variable representing 66% of the variance between one year of air pollution and subcortical gray matter microarchitecture. PM2.5 was related to greater isotropic intracellular diffusion in the thalamus, brainstem, and accumbens, which related to cognition and internalizing symptoms. These findings may be indicative of previously identified air pollution-related risk for neuroinflammation and early neurodegenerative pathologies.

10.
Neurosci Biobehav Rev ; 144: 104971, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436737

RESUMO

Neuroscientists have sought to identify the underlying neural systems supporting social processing that allow interaction and communication, forming social relationships, and navigating the social world. Through the use of NIMH's Research Domain Criteria (RDoC) framework, we evaluated consensus among studies that examined brain activity during social tasks to elucidate regions comprising the "social brain". We examined convergence across tasks corresponding to the four RDoC social constructs, including Affiliation and Attachment, Social Communication, Perception and Understanding of Self, and Perception and Understanding of Others. We performed a series of coordinate-based meta-analyses using the activation likelihood estimate (ALE) method. Meta-analysis was performed on whole-brain coordinates reported from 864 fMRI contrasts using the NiMARE Python package, revealing convergence in medial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, temporoparietal junction, bilateral insula, amygdala, fusiform gyrus, precuneus, and thalamus. Additionally, four separate RDoC-based meta-analyses revealed differential convergence associated with the four social constructs. These outcomes highlight the neural support underlying these social constructs and inform future research on alterations among neurotypical and atypical populations.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Funções Verossimilhança , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lobo Temporal , Imageamento por Ressonância Magnética
11.
Netw Neurosci ; 6(3): 791-815, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36605414

RESUMO

Altered activity within and between large-scale brain networks has been implicated across various neuropsychiatric conditions. However, patterns of network dysregulation associated with human immunodeficiency virus (HIV), and further impacted by cannabis (CB) use, remain to be delineated. We examined the impact of HIV and CB on resting-state functional connectivity (rsFC) between brain networks and associations with error awareness and error-related network responsivity. Participants (N = 106), stratified into four groups (HIV+/CB+, HIV+/CB-, HIV-/CB+, HIV-/CB-), underwent fMRI scanning while completing a resting-state scan and a modified Go/NoGo paradigm assessing brain responsivity to errors and explicit error awareness. We examined separate and interactive effects of HIV and CB on resource allocation indexes (RAIs), a measure quantifying rsFC strength between the default mode network (DMN), central executive network (CEN), and salience network (SN). We observed reduced RAIs among HIV+ (vs. HIV-) participants, which was driven by increased SN-DMN rsFC. No group differences were detected for SN-CEN rsFC. Increased SN-DMN rsFC correlated with diminished error awareness, but not with error-related network responsivity. These outcomes highlight altered network interactions among participants with HIV and suggest such rsFC dysregulation may persist during task performance, reflecting an inability to disengage irrelevant mental operations, ultimately hindering error processing.

12.
Gigascience ; 10(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414422

RESUMO

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.

13.
Neuron ; 109(11): 1769-1775, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33932337

RESUMO

Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress.


Assuntos
Comunicação , Internet , Neurociências/organização & administração , Congressos como Assunto , Guias de Prática Clínica como Assunto
14.
Nature ; 582(7810): 84-88, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32483374

RESUMO

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.


Assuntos
Análise de Dados , Ciência de Dados/métodos , Ciência de Dados/normas , Conjuntos de Dados como Assunto , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Pesquisadores/organização & administração , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conjuntos de Dados como Assunto/estatística & dados numéricos , Feminino , Humanos , Modelos Logísticos , Masculino , Metanálise como Assunto , Modelos Neurológicos , Reprodutibilidade dos Testes , Pesquisadores/normas , Software
16.
Artigo em Inglês | MEDLINE | ID: mdl-32144045

RESUMO

BACKGROUND: Neurobiological differences linked to socioemotional and cognitive processing are well documented in youths with disruptive behavior disorders (DBDs), especially youths with callous-unemotional (CU) traits. The current study expanded this literature by examining gray matter volume (GMV) differences among youths with DBD with CU traits (DBDCU+), youths with DBD without CU traits (DBD-only), and youths that were typically developing (TD). METHODS: Data were from the first full sample release of the Adolescent Brain and Cognitive Development Study (mean age = 9.49 years; 49% female). We tested whether the GMVs of 11 regions of interest selected a priori differentiated between our 3 groups: DBDCU+ (n = 288), DBD-only (n = 362), and TD (n = 915). Models accounted for demographic confounders, attention-deficit/hyperactivity disorder, and intracranial volume. We examined two potential moderators of the relationship between GMVs and group membership: sex and clinically significant anxiety (i.e., primary vs. secondary CU traits subtype). RESULTS: Youths in the DBDCU+ group had lower right amygdala GMV, and youths in the DBD-only group had lower bilateral amygdala GMV relative to TD youths. Youths in the DBDCU+ group had lower bilateral hippocampal GMV, and youths in the DBD-only group had lower left hippocampal GMV relative to TD youths. Youths in the DBDCU+ group evidenced lower left insula GMV relative to TD youths. Finally, youths in the DBD-only group had lower left superior frontal gyrus and lower right caudal anterior cingulate cortex GMVs relative to TD youths. There was no moderation of associations between GMV and group membership by sex. CONCLUSIONS: Our findings implicate structural aberrations in both the amygdala and hippocampus in the etiology of DBDs, with minimal evidence for differences based on the presence or absence of CU traits.


Assuntos
Transtorno da Conduta , Comportamento Problema , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Cognição , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino
17.
Cogn Affect Behav Neurosci ; 20(2): 215-235, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872334

RESUMO

Reward learning is a ubiquitous cognitive mechanism guiding adaptive choices and behaviors, and when impaired, can lead to considerable mental health consequences. Reward-related functional neuroimaging studies have begun to implicate networks of brain regions essential for processing various peripheral influences (e.g., risk, subjective preference, delay, social context) involved in the multifaceted reward processing construct. To provide a more complete neurocognitive perspective on reward processing that synthesizes findings across the literature while also appreciating these peripheral influences, we used emerging meta-analytic techniques to elucidate brain regions, and in turn networks, consistently engaged in distinct aspects of reward processing. Using a data-driven, meta-analytic, k-means clustering approach, we dissociated seven meta-analytic groupings (MAGs) of neuroimaging results (i.e., brain activity maps) from 749 experimental contrasts across 176 reward processing studies involving 13,358 healthy participants. We then performed an exploratory functional decoding approach to gain insight into the putative functions associated with each MAG. We identified a seven-MAG clustering solution that represented dissociable patterns of convergent brain activity across reward processing tasks. Additionally, our functional decoding analyses revealed that each of these MAGs mapped onto discrete behavior profiles that suggested specialized roles in predicting value (MAG-1 & MAG-2) and processing a variety of emotional (MAG-3), external (MAG-4 & MAG-5), and internal (MAG-6 & MAG-7) influences across reward processing paradigms. These findings support and extend aspects of well-accepted reward learning theories and highlight large-scale brain network activity associated with distinct aspects of reward processing.


Assuntos
Comportamento/fisiologia , Encéfalo/fisiologia , Análise por Conglomerados , Neuroimagem , Recompensa , Mapeamento Encefálico/métodos , Emoções/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
18.
NPJ Sci Learn ; 4: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814997

RESUMO

Understanding how students learn is crucial for helping them succeed. We examined brain function in 107 undergraduate students during a task known to be challenging for many students-physics problem solving-to characterize the underlying neural mechanisms and determine how these support comprehension and proficiency. Further, we applied module analysis to response distributions, defining groups of students who answered by using similar physics conceptions, and probed for brain differences linked with different conceptual approaches. We found that integrated executive, attentional, visual motion, and default mode brain systems cooperate to achieve sequential and sustained physics-related cognition. While accuracy alone did not predict brain function, dissociable brain patterns were observed when students solved problems by using different physics conceptions, and increased success was linked to conceptual coherence. Our analyses demonstrate that episodic associations and control processes operate in tandem to support physics reasoning, offering potential insight to support student learning.

19.
NPJ Sci Learn ; 4: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700677

RESUMO

Anxiety is known to dysregulate the salience, default mode, and central executive networks of the human brain, yet this phenomenon has not been fully explored across the STEM learning experience, where anxiety can impact negatively academic performance. Here, we evaluated anxiety and large-scale brain connectivity in 101 undergraduate physics students. We found sex differences in STEM-related and clinical anxiety, with longitudinal increases in science anxiety observed for both female and male students. Sex-specific relationships between STEM anxiety and brain connectivity emerged, with male students exhibiting distinct inter-network connectivity for STEM and clinical anxiety, and female students demonstrating no significant within-sex correlations. Anxiety was negatively correlated with academic performance in sex-specific ways at both pre- and post-instruction. Moreover, math anxiety in male students mediated the relation between default mode-salience connectivity and course grade. Together, these results reveal complex sex differences in the neural mechanisms driving how anxiety is related to STEM learning.

20.
Netw Neurosci ; 3(1): 27-48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30793072

RESUMO

Cognitive processes do not occur by pure insertion and instead depend on the full complement of co-occurring mental processes, including perceptual and motor functions. As such, there is limited ecological validity to human neuroimaging experiments that use highly controlled tasks to isolate mental processes of interest. However, a growing literature shows how dynamic, interactive tasks have allowed researchers to study cognition as it more naturally occurs. Collective analysis across such neuroimaging experiments may answer broader questions regarding how naturalistic cognition is biologically distributed throughout the brain. We applied an unbiased, data-driven, meta-analytic approach that uses k-means clustering to identify core brain networks engaged across the naturalistic functional neuroimaging literature. Functional decoding allowed us to, then, delineate how information is distributed between these networks throughout the execution of dynamical cognition in realistic settings. This analysis revealed six recurrent patterns of brain activation, representing sensory, domain-specific, and attentional neural networks that support the cognitive demands of naturalistic paradigms. Although gaps in the literature remain, these results suggest that naturalistic fMRI paradigms recruit a common set of networks that allow both separate processing of different streams of information and integration of relevant information to enable flexible cognition and complex behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...